Dynamic Coupling of Voltage Sensor and Gate Involved in Closed-State Inactivation of Kv4.2 Channels

نویسندگان

  • Jan Barghaan
  • Robert Bähring
چکیده

Voltage-gated potassium channels related to the Shal gene of Drosophila (Kv4 channels) mediate a subthreshold-activating current (I(SA)) that controls dendritic excitation and the backpropagation of action potentials in neurons. Kv4 channels also exhibit a prominent low voltage-induced closed-state inactivation, but the underlying molecular mechanism is poorly understood. Here, we examined a structural model in which dynamic coupling between the voltage sensors and the cytoplasmic gate underlies inactivation in Kv4.2 channels. We performed an alanine-scanning mutagenesis in the S4-S5 linker, the initial part of S5, and the distal part of S6 and functionally characterized the mutants under two-electrode voltage clamp in Xenopus oocytes. In a large fraction of the mutants (>80%) normal channel function was preserved, but the mutations influenced the likelihood of the channel to enter the closed-inactivated state. Depending on the site of mutation, low-voltage inactivation kinetics were slowed or accelerated, and the voltage dependence of steady-state inactivation was shifted positive or negative. Still, in some mutants these inactivation parameters remained unaffected. Double mutant cycle analysis based on kinetic and steady-state parameters of low-voltage inactivation revealed that residues known to be critical for voltage-dependent gate opening, including Glu 323 and Val 404, are also critical for Kv4.2 closed-state inactivation. Selective redox modulation of corresponding double-cysteine mutants supported the idea that these residues are involved in a dynamic coupling, which mediates both transient activation and closed-state inactivation in Kv4.2 channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intra- and Intersubunit Dynamic Binding in Kv4.2 Channel Closed-State Inactivation.

We studied the kinetics and structural determinants of closed-state inactivation (CSI) in Kv4.2 channels, considering a multistep process and the possibility that both intra- and intersubunit dynamic binding (i.e., loss and restoration of physical contact) may occur between the S4-S5 linker, including the initial S5 segment (S4S5), and the S6 gate. We expressed Kv4.2 channels in Xenopus oocytes...

متن کامل

Gating Charge Immobilization in Kv4.2 Channels: The Basis of Closed-State Inactivation

Kv4 channels mediate the somatodendritic A-type K+ current (I(SA)) in neurons. The availability of functional Kv4 channels is dynamically regulated by the membrane potential such that subthreshold depolarizations render Kv4 channels unavailable. The underlying process involves inactivation from closed states along the main activation pathway. Although classical inactivation mechanisms such as N...

متن کامل

Voltage Sensor Inactivation in Potassium Channels

In voltage-gated potassium (Kv) channels membrane depolarization causes movement of a voltage sensor domain. This conformational change of the protein is transmitted to the pore domain and eventually leads to pore opening. However, the voltage sensor domain may interact with two distinct gates in the pore domain: the activation gate (A-gate), involving the cytoplasmic S6 bundle crossing, and th...

متن کامل

Closed-state inactivation involving an internal gate in Kv4.1 channels modulates pore blockade by intracellular quaternary ammonium ions

Voltage-gated K(+) (Kv) channel activation depends on interactions between voltage sensors and an intracellular activation gate that controls access to a central pore cavity. Here, we hypothesize that this gate is additionally responsible for closed-state inactivation (CSI) in Kv4.x channels. These Kv channels undergo CSI by a mechanism that is still poorly understood. To test the hypothesis, w...

متن کامل

The S4–S5 Linker Acts as a Signal Integrator for hERG K+ Channel Activation and Deactivation Gating

Human ether-à-go-go-related gene (hERG) K(+) channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4-S5 linker, which couples movement of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2009